The BOLD signal and neurovascular coupling in autism
نویسندگان
چکیده
BOLD (blood oxygen level dependent) fMRI (functional magnetic resonance imaging) is commonly used to study differences in neuronal activity between human populations. As the BOLD response is an indirect measure of neuronal activity, meaningful interpretation of differences in BOLD responses between groups relies upon a stable relationship existing between neuronal activity and the BOLD response across these groups. However, this relationship can be altered by changes in neurovascular coupling or energy consumption, which would lead to problems in identifying differences in neuronal activity. In this review, we focus on fMRI studies of people with autism, and comparisons that are made of their BOLD responses with those of control groups. We examine neurophysiological differences in autism that may alter neurovascular coupling or energy use, discuss recent studies that have used fMRI to identify differences between participants with autism and control participants, and explore experimental approaches that could help attribute between-group differences in BOLD signals to either neuronal or neurovascular factors.
منابع مشابه
Differences in neurovascular coupling in areas with positive and negative BOLD signal
Introduction While the dynamics and mechanism of the positive BOLD response have been well studied, much less is known about the mechanism of the negative BOLD response. Although the negative BOLD response is related to decreases in neural activity [1] and in CBF [2], the temporal dynamics differ from that of the positive BOLD signal [1]. Here, we studied the properties of the negative BOLD res...
متن کاملBayesian Comparison of Neurovascular Coupling Models Using EEG-fMRI
Functional magnetic resonance imaging (fMRI), with blood oxygenation level-dependent (BOLD) contrast, is a widely used technique for studying the human brain. However, it is an indirect measure of underlying neuronal activity and the processes that link this activity to BOLD signals are still a topic of much debate. In order to relate findings from fMRI research to other measures of neuronal ac...
متن کاملOrigin of synchronized low-frequency blood oxygen level-dependent fluctuations in the primary visual cortex.
BACKGROUND AND PURPOSE Low-frequency (<0.08 Hz) fluctuations in spontaneous blood oxygen level-dependent (BOLD) signal intensity show synchronization across anatomically interconnected and functionally specific brain regions, suggesting a neural origin of fluctuations. To determine the mechanism by which high-frequency neural activity results in low-frequency BOLD fluctuations, I obtained measu...
متن کاملHigh-Resolution fMRI Reveals Laminar Differences in Neurovascular Coupling between Positive and Negative BOLD Responses
The six cortical layers have distinct anatomical and physiological properties, like different energy use and different feedforward and feedback connectivity. It is not known if and how layer-specific neural processes are reflected in the fMRI signal. To address this question we used high-resolution fMRI to measure BOLD, CBV, and CBF responses to stimuli that elicit positive and negative BOLD si...
متن کاملCoupling mechanism and significance of the BOLD signal: a status report.
Functional magnetic resonance imaging (fMRI) provides a unique view of the working human mind. The blood-oxygen-level-dependent (BOLD) signal, detected in fMRI, reflects changes in deoxyhemoglobin driven by localized changes in brain blood flow and blood oxygenation, which are coupled to underlying neuronal activity by a process termed neurovascular coupling. Over the past 10 years, a range of ...
متن کامل